

Rapport d'essai n° : 20 IAG 09-025 (Sable 0/2 Roulé) Masse volumique réelle *

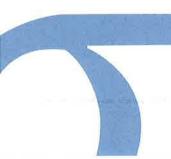
Norme NF EN 1097-6 - Article 9

Nature	Sable 0/2 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-025	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 642,2
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 = 3 780,0
Masse du pycnomètre rempli d'eau uniquement (g)	M3 = 3 376,0
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 639,7
Température de la prise d'essai dans l'eau (°C)	Δ = 22,0

Masse volumique réelle


$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,68 Mg/m³

A été réalisé à IDA Granulats, le 03/09/20

Essai réalisé par Laura GROLEAS (rolean

Le Responsable de la Section Granulats

Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pas été demandées par le donneur d'ordre.

font l'objet d'un document séparé.

sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-025 (Sable 0/2 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/2 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-025	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Exp	Expression des résultats		
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	758,8		
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	753,8		

Coefficient d'absorption d'eau

WA24 = $100 \times \frac{M_1 - M_4}{M_4}$

WA24 = 0,7 %

« Essai réalisé sur la fraction 0/D (fines incluses) conformément au renvoi (1) du tableau 54 de la NF P 18-545 »

A été réalisé à IDA Granulats, le 03/09/20

Essai réalisé par

Laura GROLEAS Code

Le Responsable de la Section Granulats

Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa farme intégrale, il comporte A.... page(s).
L'accréditation par Cofrac atteste de la compétence du laboratoire pour les seuls essais couverts par l'accréditation, repérés par le symbole*.
Les essais faisant l'objet du présent rapport partent sur un échantillan prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillan et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillan défini ci-dessus mais que la partée et les conclusions à tirer de ces résultats :

L'an'ant pas été demandées par le donneur d'ardre.
I sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-026 (Sable 0/4 Roulé) Caract. complémentaires sable

Norme NF P 18-545

Nature	Sable 0/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-026	Technicien	Justine JOLLY

Une présence d'impuretés telles que le charbon, les déchets de bois, les débris végétaux,... peuvent provoquer des défauts d'aspects. Principe La présence d'éléments coquilliers en forte proportion est un facteur de moindre résistance du béton. La présence d'argiles peut entrainer des défauts d'adhérence granulats-liants.

Teneur en Impuretés Prohibées

suivant la norme NF P 18-545 - Septembre 2011

ImP <

0,01 %

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Justine JOLLY 3

Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la partée et les canclusions à firer de ces résultats :

In'ant pas été demandées par le donneur d'ordre.
In sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-026 (Sable 0/4 Roulé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-026	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

S <mark>pécifications</mark>	Ехр	Expression des résultats		
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	398,1		
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	3 563,7		
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 315,4		
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	396,7		
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0		

Masse volumique réelle

$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,64 Mg/m³

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS

Le Responsable de la Section Granulats
Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-026 (Sable 0/4 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-026	Technicien	Laura GROLEAS

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse Principe sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Ехр	Expression des résultats		
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	694,5		
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	690,0		

Coefficient d'absorption d'eau

 $WA24 = 100x \frac{M_1 - M_4}{M_4}$

WA24 = 0.7 %

« Essai réalisé sur la fraction 0/D (fines incluses) conformément au renvoi (1) du tableau 54 de la NF P

A été réalisé à IDA Granulats, le 03/09/20

Essai réalisé par

Laura GROLEAS

Le Responsable de la Section Granulats

Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés por le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la

Rapport d'essai n° : 20 IAG 09-026 (Sable 0/4 Roulé) Détermination de la teneur potentielle en matières humiques *

Norme NF EN 1744-1+A1 §15.1

Nature Sable 0/4 Roulé Date de prélèvement 17/08/2020 Installation de traitement Site de BALDERSHEIM Prélevé par Client Donneur d'ordre **TEGRAL SA** Lieu de prélèvement Site de BALDERSHEIM

Origine des matériaux Site de BALDERSHEIM Date de réception 28/08/2020 Nro d'affaire

15 / 20 / 09-008 (630002164) Date d'essai 04/09/2020 Nro d'échantillon 20 IAG 09-026 Technicien **Justine JOLLY**

Principe

Les matières humiques sont des substances organiques qui se forment dans le sol par décomposition des résidus animaux et végétaux. La teneur en matières humiques est estimée d'après la couleur qui se forme lorsqu'une prise d'essai est agitée dans une solution d'hydroxyde de sodium.

Spécifications

Si la solution est plus foncée que la solution témoin

Test Positif

Si la solution est moins foncée que la solution témoin

Test Negatif

Mise en évidence de matières humiques

Comparaison de couleur

Test Négatif

A été réalisé à IDA Granulats, le 04/09/20

Essai réalisé par Justine JOLLY

Le Responsable de la Section Granulats

Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-026 (Sable 0/4 Roulé) Eléments chimiques

Norme NF EN 1744-1+A1

Nature	Sable 0/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	14/09/2020
Nro d'échantillon	20 IAG 09-026	Technicien	LMM / JOLLY

Principe

Une présence importante de soufre dans les granulats peut provoquer des taches de rouille ou des éclatements superficiels. La présence de sulfates dans les granulats peut être à l'origine de réactions expansives dues à la formation d'ettringite. L'action des chlorures est particulièrement néfaste sur les armatures dont la corrosion peut provoquer l'éclatement du béton, ceci indépendamment du fait que leur présence agit sur la vitesse de prise du ciment.

Teneur en Soufre total	suivant l'article 11 de la norme NF EN 1744-1+A1	s =	0,01 %
Teneur en Sulfates solubles dans l'acide	suivant l'article 12 de la norme NF EN 1744-1+A1		0,01 %

A été réalisé à IDA Granulats, le 14/09/20 Essai réalisé par LMM / JOLLY > Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte page(s).
Les essais dont les résultats figurent ci-dessus ont été exécutés conformément aux normes AFNOR saut indication contraire en observation.
Les échantillons sont éliminés après essai sauf demandre expresse du donneur d'ordre.
Les essais faisant l'objet du présent rapport portent sur un échantillon prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production au de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à firer de ces résultats :

M'n'ont pas été demandées par le donneur d'ordre.

I sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-026 (Sable 0/4 Roulé) Détermination des alcalins actifs solubles dans l'eau de chaux

Norme XP P 18-544

Sable 0/4 Roulé Nature Date de prélèvement 17/08/2020 Installation de traitement Site de BALDERSHEIM Prélevé par Client

Donneur d'ordre **TEGRAL SA** Lieu de prélèvement Site de BALDERSHEIM

Origine des matériaux Site de BALDERSHEIM Date de réception 28/08/2020 Nro d'affaire 15 / 20 / 09-008 (630002164) 18/09/2020 Date d'essai

Nro d'échantillon 20 IAG 09-026 Technicien Laboratoire LMM

Principe

Une masse de granulats ou de fillers siliceux (500 g) placée dans un récipient en acier inoxydable ou en polypropylène est portée au contact d'une solution saturée de chaux à ébullition. A l'issue d'une durée de contact déterminée (7 heures +/- 30 mn), la suspension aqueuse est prélevée, filtrée et le filtrat soumis après acidification et dilution à l'analyse par spectrométrie de flamme, pour doser les alcalins (sodium et potassium).

Teneurs en alcalins actifs

K2O actifs 0.0016 %

Na2O actifs 0.0018 %

0,0029 % Na2O équivalent

A été réalisé à IDA Granulats, le 18/09/20

Essai réalisé par Laboratoire LMM

Le Responsable de la Section Granulats

Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte page(s).
Les essais dont les résultats figurent ci-dessus ant été exécutés conformément aux normes AFNOR soul indication contraire en observation.
Les échantillans sont éliminés après essai soul demande expresse du donneur d'ordre.
Les essais fisiant l'objet du présent rapport portent sur un échantillan préfevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été ablenus avec l'échantillon défini ci-dessus mais que la collentait es ainte sur le lair que les résultats : portée et les conclusions à titer de ces résultats : to n'ont pas été demandées par le donneur d'ordre. □ fant l'objet d'un document séparé. □ sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-027 (Sable 0/4 Rec) Masse volumique réelle '

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/4 Rec	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	02/09/2020
Nro d'échantillon	20 IAG 09-027	Technicien	Laura GROLEAS


La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y Principe compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 957,3
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 = 3 916,3
Masse du pycnomètre rempli d'eau uniquement (g)	M3 = 3 315,4
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 952,9
Température de la prise d'essai dans l'eau (°C)	Δ = 22,0

Masse volumique réelle

$$\rho_{rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,67 Mg/m³

A été réalisé à IDA Granulats, le 02/09/20 70% Roulé 30% Concassé 0/4 R+0/4 C Essai réalisé par Laura GROLEAS Colo Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-027 (Sable 0/4 Rec) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/4 Rec	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	02/09/2020
Nro d'échantillon	20 IAG 09-027	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Ехр	ression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	649,7
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	644,6

Coefficient d'absorption d'eau

 $\mathbf{WA24} = 100 \mathbf{x} \frac{\mathbf{M}_1 - \mathbf{M}_4}{\mathbf{M}_4}$

WA24 = 0,8 %

70% Roulé 30% Concassé 0/4 R+0/4 C

« Essai réalisé sur la fraction 0/D (fines incluses) conformément au renvoi (1) du tableau 54 de la NF P 18-545 »

A été réalisé à IDA Granulats, le 02/09/20

Essai réalisé par

Laura GROLEAS

Le Responsable de la Section Granulats

Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la partée et les conclusions à tirer de ces résultats :

In n'ont pas été demandées par le donneur d'ordre. In font l'objet d'un document séparé.
In sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-027 (Sable 0/4 Rec) Détermination de la teneur potentielle en matières humiques *

Norme NF EN 1744-1+A1 §15.1

Sable 0/4 Rec Date de prélèvement 17/08/2020 Installation de traitement Site de BALDERSHEIM Prélevé par Client Donneur d'ordre **TEGRAL SA** Lieu de prélèvement Site de BALDERSHEIM

Origine des matériaux Site de BALDERSHEIM Date de réception 28/08/2020 Nro d'affaire 15 / 20 / 09-008 (630002164) Date d'essai 04/09/2020

Nro d'échantillon 20 IAG 09-027 Technicien **Justine JOLLY**

Principe

Les matières humiques sont des substances organiques qui se forment dans le sol par décomposition des résidus animaux et végétaux. La teneur en matières humiques est estimée d'après la couleur qui se forme lorsqu'une prise d'essai est agitée dans une solution d'hydroxyde de sodium.

Spécifications

Si la solution est plus foncée que la solution témoin

Test Positif

Si la solution est moins foncée que la solution témoin

Test Negatif

Mise en évidence de matières humiques

Comparaison de couleur

Test Négatif

70% Roulé 30% Concassé 0/4 R+0/4 C

A été réalisé à IDA Granulats, le 04/09/20

Essai réalisé par Justine JOLLY 🥳

Le Responsable de la Section Granulats

Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-028 (Sable 0/4 Rec Lavé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 9

Nro d'échantillon	20 IAG 09-028	Technicien	Laura GROLEAS
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	02/09/2020
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Nature	Sable 0/4 Rec Lavé	Date de prélèvement	17/08/2020

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 778,9
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 = 3 790,2
Masse du pycnomètre rempli d'eau uniquement (g)	M3 = 3 301,7
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 776,1
Température de la prise d'essai dans l'eau (°C)	Δ = 22,0

Masse volumique réelle

$$\rho_{\rm rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$

 $\rho rd = 2,67 \text{ Mg/m}^3$

80% 0/2 Concassé Lavé + 20 % 2/4 Concassé Lavé

A été réalisé à IDA Granulats, le 02/09/20

Essai réalisé par

Laura GROLEAS Coles

Le Responsable de la Section Granulats

Bertrand CHORIER

ESSAIS
ACCEPTATION
ACCEPTATION
FORTHER DECONAGES SAM

Rapport d'essai n° : 20 IAG 09-028 (Sable 0/4 Rec Lavé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 9

Nature	Sable 0/4 Rec Lavé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	02/09/2020
Nro d'échantillon	20 IAG 09-028	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Ехрі	ession des résultat	S
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	789,7	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	782,9	

Coefficient d'absorption d'eau

 $WA24 = 100 \times \frac{M_1 - M_4}{M_4}$

WA24 = 0,9 %

80% 0/2 Concassé Lavé + 20 % 2/4 Concassé Lavé

« Essai réalisé sur la fraction 0/D (fines incluses) conformément au renvoi (1) du tableau 54 de la NF P 18-545 »

A été réalisé à IDA Granulats, le 02/09/20

Essai réalisé par

Laura GROLEAS (where

Le Responsable de la Section Granulats

Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comparte. Al. page(s).
L'accréditation par Cafrac attesté de la compétence du laborataire pour les seuls essais couverts par l'accréditation, repérés par le symbole.
Les essais faisant l'objet du présent rapport portent sur un échantillan prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillan et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés por le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à firer de ces résultats :

★ n'ont pas été demandées par le donneur d'ordre. ☐ font l'objet d'un document séparé.
☐ sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-029 (Gravillon 4/8 Roulé) Résistance aux chocs - Los Angeles *

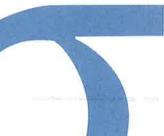
Norme NF EN 1097-2 - Juin 2010

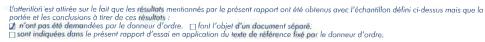
Nature	Gravillon 4/8 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-029	Technicien	Célène PRIOLO

Principe

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm produite en soumettant le matériaux aux chocs de boulets normalisés dans la machine Los Angeles.

La granularité du matériaux soumis à l'essai est préconisé pour la classe 10/14.


La masse de la charge de boulets varie suivant les classes granulaires.


	Spécifications	Essai	
Masse de l'échantillon (g M = 5000 g ± 5)	M = 5 000,7	
Classe granulaire			
4 / 6,3 mm - 4 / 8 mm 10 / 14 mm	- 6,3 / 10 mm - 8 / 11,2 mm - 11,2 / 16 mm	Classe = 4 / 8 mm	
Nombre de boulets			***********
classe granulaire	nombre de boulets		
4 / 6,3 mm	7		
4 / 8 mm 6.3 / 10 mm	8	Nombre = 8	
8 / 11,2 mm	10		
10 / 14 mm	11		
11,2 / 16 mm	12		
Rotation du tambour		Tours = 500	
4 / 8 - 6,3 / 10 - 8 / 11,2	- 10 / 14 - 11,2 / 16 mm : 500 tours	134,6	
Masse du refus au tamis	de contrôle (g)	m = 4 237,6	

Résultat Los Angeles

$$LA = \frac{5000 - m}{50}$$

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-029 (Gravillon 4/8 Roulé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 4/8 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-029	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifi <mark>cations</mark>	Ехр	Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 584,1	
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 305,8	
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 323,6	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 565,9	
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0	

Masse volumique réelle

$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,60 Mg/m³

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par

Laura GROLEAS Cod

Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-029 (Gravillon 4/8 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 4/8 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-029	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 594,1
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 1 565,9

Coefficient d'absorption d'eau

 $\mathbf{WA24} = 100 \mathbf{x} \frac{\mathbf{M}_1 - \mathbf{M}_4}{\mathbf{M}_4}$

WA24 = 1,8 %

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS C Le Responsable de la Section Granulats **Bertrand CHORIER**

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la partée et les canclusions à tirer de ces résultats :

In n'ant pas été demandées par le donneur d'ordre. | font l'objet d'un document séparé. |
In sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Pétrographie

Norme NF EN 932-3/A1 - Avril 2004

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	11/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Guillaume LEPINE

Principe Cette identification consiste à déterminer la répartition pondérale des différentes natures pétrographiques sur la base d'une analyse visuelle.

Analyse petrographique					
Roches magmatiqu	ies	Roches Métamorphiqu	ies	Roches Sédimentaire	s
Magmatiques plutoniques	les	Métamorphiques		Carbonates	
Granite (%) Syénite (%) Granodiorite (%) Diorite (%) Quartz (%) Gabbro (%) Magmatiques Hypovolcan	3,0	Non différenciées (%) Marbre (%) Amphibolite (%) Cornéenne (%) Granulite (%) Gneiss (%) Quartzite (%) Schiste (%) Serpentite (%)	8,0 13,0	(origine chimique et biologiq Calcaire Marneux (%) Calcaire Sublithographique (%) Calcaire Gréseux (%) Calcaire Fin à grossier (%) Craie (%) Dolomite (%) Chert (%)	55,0 5,0
Dolérite (%) Diabase (%)		Ardoise (%) Myolinite (%)		Détritiques Grés (%) Conglomérat (%)	5,0
Plutoniques Effusives Rhyolite (%) Trachyte (%) Andésite (%) Dacite (%) Basalte (%)				Arkose (%) Brèche (%) Grauwacke (%) Quartzite (%) Argile schisteuse, Silstone (%)	
Total roches magmatiques (%)	3,0	Total roches métamorphiques (%)	32,0	Total roches sédimentaires (%)	65,0

Type de formation Age géologique

> A été réalisé à IDA Granulats, le 11/09/20 Essai réalisé par

Guillaume LEPINE

Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

'A n'ont pas été demandées par le donneur d'ordre. | font l'objet d'un document séparé. |
| sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Caract. complémentaires gravillon

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Justine JOLLY

Principe Une présence d'impuretés telles que le charbon, les déchets de bois, les débris végétaux,... peuvent provoquer des défauts d'aspects.

La présence d'éléments coquilliers en forte proportion est un facteur de moindre résistance du béton.

La présence d'argiles peut entrainer des défauts d'adhérence granulats-liants.

Teneur en Impuretés Prohibées	suivant la norme NF P 18-545 · Septembre 2011	ImP <	0,01 %
Teneur en Eléments Coquilliers	suivant la norme NF EN 933-7 - Aout 1998	Cq <	0,1 %
Boulettes d'Argile isolées	suivant la norme NF P 18-545 - Septembre 2011	Ba<	0,1 %

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Justine JOLLY Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte, page(s).
Les essais dant les résultats figurent ci-dessus ont été exécutés conformément aux normes AFNOR souf indication contraire en observation.
Les échantillons sont éliminés après essai sauf demande expresse du donneur d'ordre.
Les essais faisant l'objet du présent rapport portent sur un échantillon prélevé dans certaines conditions, Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de lo production ou de la fourniture.

L'attention est altirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échontillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pas été demandées par le donneur d'ordre. | font l'objet d'un document séparé. |
| sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Résistance à l'usure - Micro Deval *

Norme NF EN 1097-1 - Août 2011

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Célène PRIOLO

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm produite en soumettant le matériaux à l'usure par frottements Principe réciproques dans un cylindre en rotation.

L'essai se fait sur deux échantillons de 500 g.

Spécifications		Essai
Masse de l'échantillon (g)	M1 =	501,6
M = 500 g ± 2	M2 =	500,3
Classe granulaire		
4 / 6,3 mm- 4 / 8 mm- 6,3 / 10 mm- 8 / 11,2 mm- 11,2 / 16 n 10 / 14 mm 60% à 70% de passant à 12 ou 30% à 40% de passant à		10 / 14 mm
Masse de charge abrasive	***************************************	
$\begin{array}{ccccc} \text{classe granulaire} & \text{charge abrasive (g)} \\ 4 / 6,3 & \text{mm} & 2000 \text{g} \pm 5 \\ 4 / 8 & \text{mm} & 2800 \text{g} \pm 5 \\ 6,3 / 10 \text{mm} & 4000 \text{g} \pm 5 \\ 8 / 11,2 \text{mm} & 4400 \text{g} \pm 5 \\ 10 / 14 \text{mm} & 5000 \text{g} \pm 5 \\ 11,2 / 16 \text{mm} & 5400 \text{g} \pm 5 \end{array}$	Masse =	5 000
Masse du refus au tamis de contrôle : 1er échantillon (m1 =	449,9 MDE1 = 10,0
Masse du refus au tamis de contrôle : 2ème échantillo) m2 =	463,5 MDE2 = 7,3

Micro Deval en présence d'eau

$$MDE = \frac{500 - m}{5}$$

MDE = 9

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Résistance aux chocs - Los Angeles *

Norme NF EN 1097-2 - Juin 2010

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Célène PRIOLO

Principe

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm produite en soumettant le matériaux aux chocs de boulets normalisés dans la machine Los Angeles.

La granularité du matériaux soumis à l'essai est préconisé pour la classe 10/14.

La masse de la charge de boulets varie suivant les classes granulaires.

	Spécifications	Essai
Masse de l'échantillon (g) M = 5000 g ± 5		M = 5 001,0
Classe granulaire		
4 / 6,3 mm - 4 / 8 mm 10 / 14 mm	- 6,3 / 10 mm - 8 / 11,2 mm - 11,2 / 16 mm	Classe = 10 / 14 mm
Nombre de boulets		
classe granulaire 4 / 6,3 mm 4 / 8 mm 6,3 / 10 mm 8 / 11,2 mm 10 / 14 mm 11,2 / 16 mm	nombre de boulets 7 8 9 10 11	Nombre = 11
Rotation du tambour 4 / 8 - 6,3 / 10 - 8 / 11,2	? - 10 / 14 - 11,2 / 16 mm : 500 tours	Tours = 500
Masse du refus au tamis	de contrôle (g)	m = 4 186,2

Résultat Los Angeles

$$LA = \frac{5000 - m}{50}$$
 $LA = 16$

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

In n'ant pas été demandées par le donneur d'ordre. | font l'objet d'un document séparé. |
In sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-030 (Gravillon 8/16 Roulé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expr	ession des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 880,9
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 545,3
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 373,8
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 867,3
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0

Masse volumique réelle

$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,63 Mg/m³

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par

Laura GROLEAS Code

Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-030	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications Spécifications		Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 880,9	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 867,3	

Coefficient d'absorption d'eau

$$WA24 = 100 \times \frac{M_1 - M_4}{M_4}$$

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS C Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-030 (Gravillon 8/16 Roulé) Eléments chimiques

Norme NF EN 1744-1+A1

Nature	Gravillon 8/16 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Ostalina dan makkalana	A	5 4 4 4 4	
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date de réception	28/08/2020 14/09/2020

Principe

Une présence importante de soufre dans les granulats peut provoquer des taches de rouille ou des éclatements superficiels. La présence de sulfates dans les granulats peut être à l'origine de réactions expansives dues à la formation d'ettringite. L'action des chlorures est particulièrement néfaste sur les armatures dont la corrosion peut provoquer l'éclatement du béton, ceci indépendamment du fait que leur présence agit sur la vitesse de prise du ciment.

suivant l'article 11 de la norme NF EN 1744-1+A1	S =	0,01 %
suivant l'article 12 de la norme NF EN 1744-1+A1	AS =	0,01 %
		suivant l'article 12 de la norme NF EN 1744-1+A1 AS =

A été réalisé à IDA Granulats, le 14/09/20 Essai réalisé par LMM / JOLLY Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte A... page(s).
Les essais dont les résultats figurent ci-dessus ont été exécutés conformément aux normes AFNOR sauf indication contraire en observation.
Les échantillons sant éliminés après essai sauf demande expresse du donneur d'ordre.
Les essais faison l'objet du présent rapport partent sur un échantillon prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le foit que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

(n'ont pas été demandées par le donneur d'ordre. | Iont l'objet d'un document séparé. | sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-030 (Gravillon 8/16 Roulé) Détermination des alcalins actifs solubles dans l'eau de chaux

Norme XP P 18-544

Nature Gravillon 8/16 Roulé Date de prélèvement 17/08/2020 Installation de traitement Site de BALDERSHEIM Prélevé par Client Donneur d'ordre **TEGRAL SA**

Lieu de prélèvement Site de BALDERSHEIM Origine des matériaux Site de BALDERSHEIM Date de réception 28/08/2020

Nro d'affaire 15 / 20 / 09-008 (630002164) Date d'essai 18/09/2020

Nro d'échantillon 20 IAG 09-030 Technicien Laboratoire LMM Une masse de granulats ou de fillers siliceux (500 g) placée dans un récipient en acier inoxydable ou en polypropylène est portée au Principe

alcalins (sodium et potassium).

Teneurs en alcalins actifs

contact d'une solution saturée de chaux à ébullition. A l'issue d'une durée de contact déterminée (7 heures +/- 30 mn), la suspension aqueuse est prélevée, filtrée et le filtrat soumis après acidification et dilution à l'analyse par spectrométrie de flamme, pour doser les

> K2O actifs 0,0007 %

Na2O actifs 0,0011 %

Na2O équivalent 0,0016 %

A été réalisé à IDA Granulats, le 18/09/20

Essai réalisé par Laboratoire LMM

Le Responsable de la Section Granulats

Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte ./ ... page(s).
Les essais dont les résultats ligurent ci-dessus ant êté exècutés conformément aux normes AFNOR soul indication contraire en observation.
Les échantillons sont éliminés après essai soul demande expresse du donneur d'ordre.
Les essais freisunt l'objet du présent rapport portent sur un échantillon prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à firer de ces résultats :

n'ant pos été demandées par le donneur d'ordre. | font l'objet d'un document séparé. |
sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-031 (Gravillon 16/32 Roulé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 16/32 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-031	Technicien	Laura GROLEAS

La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y Principe compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Express	ion des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	2 147,3
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 719,5
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 378,0
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	2 129,4
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0

Masse volumique réelle

$$\rho_{\rm rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,64 Mg/m³

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par

Laura GROLEAS Code

Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-031 (Gravillon 16/32 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 16/32 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-031	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Exp	Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	2 147,3	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	2 129,4	

Coefficient d'absorption d'eau

WA24 =
$$100 \times \frac{M_1 - M_4}{M_4}$$

WA24 = 0,8 %

> A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS Comments Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-032 (Gravillon 2/4 Roulé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 2/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-032	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Ехр	Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 290,5	
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 130,4	
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 332,9	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 270,6	
Température de la prise d'essai dans l'eau (°C)	Δ =	22,0	

Masse volumique réelle

$$\rho_{rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,57 Mg/m³

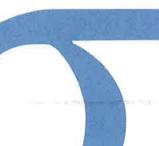
A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS Cude Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-032 (Gravillon 2/4 Roulé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 2/4 Roulé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	03/09/2020
Nro d'échantillon	20 IAG 09-032	Technicien	Laura GROLEAS

Principe


Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 290,5
Masse sèche de l'échantillon - Pesée à l'air (g) Après sèchage	M4 = 1 270,6

Coefficient d'absorption d'eau

$$WA24 = 100 \times \frac{M_1 - M_4}{M_4}$$
 WA24 = 1,6 %

A été réalisé à IDA Granulats, le 03/09/20 Essai réalisé par Laura GROLEAS Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essoi n'est autorisé que sous sa forme intégrale, il comporte. A. page(s).
L'accréditation par Cofrac atteste de la compétence du laboratoire pour les seuls essois couverts par l'accréditation, repérés par le symbole.
Les essois taisant l'objet du présent rapport portent sur un échantillan prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les canclusions à tirer de ces résultats :

A n'ant pas été demandées par le donneur d'ordre.

I sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-033 (Gravillon 2/4 Concassé Lavé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 2/4 Concassé Lavé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-033	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expres	Expression des résultats		
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	663,3		
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	3 792,2		
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 376,0		
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	658,5		
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0		

Masse volumique réelle

$$\rho_{rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,66 Mg/m³

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par

Laura GROLEAS Code

Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats : (₹ n'ont pas été demandées par le donneur d'ordre. □ font l'objet d'un document séparé. □ sont indiquées dans le présent rapport d'essai en application du texte de référence tixé par le donneur d'ordre.

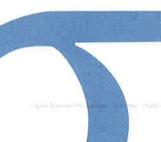
Rapport d'essai n° : 20 IAG 09-033 (Gravillon 2/4 Concassé Lavé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 2/4 Concassé Lavé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-033	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.


Spécifications		Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	663,3	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	658,5	


Coefficient d'absorption d'eau

 $\mathbf{WA24} = 100 \mathbf{x} \frac{\mathbf{M}_1 - \mathbf{M}_4}{\mathbf{M}_4}$

WA24 = 0,7 %

> A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS Contract Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Résistance à l'usure - Micro Deval *

Norme NF EN 1097-1 - Août 2011

Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-034	Technicien	Célène PRIOI O

Principe L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm produite en soumettant le matériaux à l'usure par frottements réciproques dans un cylindre en rotation.

L'essai se fait sur deux échantillons de 500 g.

Spécifications		Essai
Masse de l'échantillon (g)	M1 =	500,5
M = 500 g ± 2	M2 =	501,0
Classe granulaire	***************************************	
4 / 6,3 mm- 4 / 8 mm- 6,3 / 10 mm- 8 / 11,2 mm- 11,2 / 16 mm 10 / 14 mm 60% à 70% de passant à 12,5 mm ou 30% à 40% de passant à 11,2 mm	Classe =	6,3 / 10 mm
Masse de charge abrasive		***************************************
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Masse =	4 000
Masse du refus au tamis de contrôle : 1er échantillon (g)	m1 =	456,4 MDE1 = 8,7
Masse du refus au tamis de contrôle : 2ème échantillon (g)	m2 =	455,0 MDE2 = 9,0

Micro Deval en présence d'eau

$$\mathbf{MDE} = \frac{500 - \mathbf{m}}{5}$$

MDE = 9

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte ...A.. page(s).
L'accréditation par Cofrac atteste de la compétence du laboratoire pour les seuls essais couverts par l'accréditation, repérés par le symbole*.
Les essais faisant l'objet du présent rapport potent sur un échantillon prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillon et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la partée et les conclusions à litrer de ces résultats :

A n'ant pas été demandées par le donneur d'ordre. | fant l'objet d'un document séparé. |

I sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Résistance aux chocs - Los Angeles *

Norme NF EN 1097-2 - Juin 2010

Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020
Instaliation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-034	Technicien	Célène PRIOLO

Principe

L'essai consiste à mesurer la quantité d'éléments inférieurs à 1.6 mm produite en soumettant le matériaux aux chocs de boulets normalisés dans la machine Los Angeles.

La granularité du matériaux soumis à l'essai est préconisé pour la classe 10/14.

La masse de la charge de boulets varie suivant les classes granulaires.

	Spécifications		Essai
Masse de l'échantillon (g M = 5000 g ± 5)	M =	5 000,5
Classe granulaire	- 6,3 / 10 mm - 8 / 11,2 mm - 11,2 / 16 mm		
10 / 14 mm		Classe =	6,3 / 10 mm
Nombre de boulets			
classe granulaire	nombre de boulets	I	
4 / 6,3 mm 4 / 8 mm 6,3 / 10 mm 8 / 11,2 mm 10 / 14 mm 11,2 / 16 mm	7 8 9 10 11	Nombre =	9
Rotation du tambour 4 / 8 - 6,3 / 10 - 8 / 11,2	? - 10 / 14 - 11,2 / 16 mm : 500 tours	Tours =	500
Masse du refus au tamis	de contrôle (g)	m =	4 193,9

Résultat Los Angeles

$$LA = \frac{5000 - m}{50}$$

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats

Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnès par le présent rapport ant été obtenus avec l'échantillon défini ci-dessus mais que la partée et les conclusions à firer de ces résultats :

I n'ont pas été demandées par le donneur d'ordre. | | fant l'objet d'un document séparé. |
| sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Masse volumique réelle

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-034	Technicien	Laura GROLEAS

La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y Principe compris les pores fermés et ceux accessibles à l'eau.

Spécifications Spécifications	Exp	ression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 707,6
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 379,8
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 315,4
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 696,6
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0

Masse volumique réelle

$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,63 Mg/m³

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS Condi Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n° : 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Masse volumique réelle pré-séchée *

Norme NF EN 1097-6 - Annexe A.4

Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020	
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client	
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM	
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020	
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	14/09/2020	
Nro d'échantillon	20 IAG 09-034	Technicien	Yohan MICLOT	

Principe La masse volumique est définie comme le quotient de la masse de grains secs par unité de volume.

Spécifications		Expression des résultats		
		Essai n°1	Essai n°2	
Masse du pycnomètre sec (g)	M1 =	1 039,3	1 028,1	
Masse de la prise d'essai 1 dans le pycnomètre (g)	M2 =	1 735,9	1 752,8	
Volume prédeterminé du pycnomètre utilisé (ml)	V =	2 281	2 278	
Température de la prise d'essai dans l'eau (°C) Après immersion pendant au moins 1 heure	Δ=	23,0	23,0	
Masse de la prise d'essai dans le pycnomètre rempli d'eau (g) Après immersion pendant au moins 1 heure	M3 =	3 750,0	3 754,8	
Masse volumique réelle pré-séchée de la prise d'essai (Mg/m³)	1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2,660	2,674	

Masse volumique réelle pré-séchée

$$\rho_{p} = \frac{M_{2} - M_{1}}{V - \frac{M_{3} - M_{2}}{\rho_{w}}} \qquad \qquad \rho p = 2,67 \text{ Mg/m}^{3}$$

A été réalisé à IDA Granulats, le 14/09/20

Essai réalisé par Yohan MICLOT

Le Responsable de la Section Granulats

Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

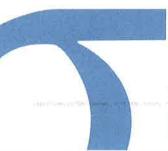
Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-034	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Expr	Expression des résultats		
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 707,6		
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 696,6		

Coefficient d'absorption d'eau


$$WA24 = 100 x \frac{M_1 - M_4}{M_4}$$

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par

Laura GROLEAS CAROLE

Le Responsable de la Section Granulats

Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-034 (Gravillon 6,3/10 Concassé) Coefficient de polissage accéléré *

Norme NF EN 1097-8 - Décembre 2009

Nature	Gravillon 6,3/10 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	08/09/2020
Nro d'échantillon	20 IAG 09-034	Technicien	Guillaume I EPINE

Principe

Le but de l'essai est de fournir une mesure relative caractérisant l'aptitude des gravillons de chaussée à se polir sous l'effet du trafic. L'essai ne s'adresse qu'aux gravillons destinés aux couches de roulement et s'effectue sur la fraction 7,2/10.

L'essai comprend deux phases successives :

- Action de polissage sur une machine adaptée.
- Mesure de rugosité finale à l'aide du pendule.
- (*) l'essai est réalisé en utilisant comme pierre de référence le granite allemand "Herrnholzer".

Préparation des éprouvettes


Roches magmatiques		Roches Métamorphiqu	es	Roches Sédimentaire	S
Magmatiques plutoniques		Métamorphiques		Carbonates	
Granite (%) Syénite (%) Granodiorite (%) Diorite (%) Quartz (%) Gabbro (%) Non différenciées Magmatiques Hypovolcaniques Dolérite (%)	.0	Non différenciées (%) Marbre (%) Amphibolite (%) Cornéenne (%) Granulite (%) Gneiss (%) Quartzite (%) Schiste (%) Serpentite (%) Ardoise (%)	5.0 15.0	(origine chimique et biologic Calcaire Marneux (%) Calcaire Sublithographique (%) Calcaire Gréseux (%) Calcaire Fin à grossier (%) Craie (%) Dolomite (%) Chert (%)	61. 0
Diabase (%)		Myolinite (%)		Détritiques	
Plutoniques Effusives		:		Grés (%) Conglomérat (%)	10,0
Rhyolite (%) Trachyte (%) Andésite (%) Dacite (%) Basalte (%)	0			Arkose (%) Brèche (%) Grauwacke (%) Quartzite (%) Argile schisteuse, Silstone (%)	
otal roches magmatiques (%)	! 0,0	Total roches métamorphiques (%)	20.0	Total roches sédimentaires (%)	71.0

Coefficient de polissage accéléré				
Roue		Roue 2		
1ère éprouvette	53,3	3ème éprouvette	51,3	
2ème éprouvette	54,3	4ème éprouvette	54,3	
Plaquette de référence 1	56,7	Plaquette de référence 3	57,7	
Plaquette de référence 2	58,3	Plaquette de référence 4	57.3	
Moyenne éprouvettes Roue 1	53,8	Moyenne éprouvettes Roue 2	52.8	
Moyenne références Roue 1	57,5	Moyenne références Roue 2	57,5	

S (Valeur moyenne des 4 éprouvettes de granulat) 53,3 C (Valeur moyenne des 4 éprouvettes de pierre de référence (*)) C= 57,5 PSV = S + (56) - C

PSV = A été réalisé à IDA Granulats, le 08/09/20

Essai réalisé par Guillaume LEPINE Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

A n'ont pas été demandées par le donneur d'ordre. | lont l'objet d'un document séparé. |
| sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-035 (Sable 0/4 Concassé) Friabilité des sables

Norme P 18-576 - Décembre 1990

Nature	Sable 0/4 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	07/09/2020
Nro d'échantillon	20 IAG 09-035	Technicien	Célène PRIOLO

L'essai consiste à mesurer l'évolution granulométrique des sables produite par fragmentation dans un cylindre en rotation à l'aide d'une Principe charge en présence d'eau.

Les éléments fins du sable, inférieurs à 0.2 mm, ne sont pas étudiés.

La masse de la charge abrasive est de 2500 g quelque soit la classe granulaire.

Spécifications	Essai
Masse de l'échantillon (g)	
M = 500 g ± 2	M = 500,6
Classe granulaire	
0,2 / 2 mm 0,2 / 4 mm	Classe = 0,2 / 2 mm
Masse de charge abrasive (g)	
$M = 2500 \text{ g} \pm 4$	Masse = 2 499,5
Masse de refus au tamis de contrôle de 0,1 mm (g)	m' = 362,3

Coefficient de friabilité des sables

$$FS = 100x \frac{500 - m'}{500}$$

FS = 28

A été réalisé à IDA Granulats, le 07/09/20 Essai réalisé par Célène PRIOLO Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats:

a n'ont pas été demandées par le donneur d'ordre.

a font l'objet d'un document séparé.

a sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-035 (Sable 0/4 Concassé) Masse volumique réelle pré-séchée *

Norme NF EN 1097-6 - Annexe A.4

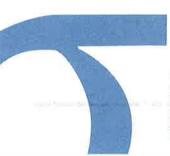
Nature	Sable 0/4 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	14/09/2020
Nro d'échantillon	20 IAG 09-035	Technicien	Yohan MICLOT

Principe La masse volumique est définie comme le quotient de la masse de grains secs par unité de volume.

Spécifications	Expression des résultats		
		Essai n°1	Essai n°2
Masse du pycnomètre sec (g)	M1 =	1 038,7	1 021,4
Masse de la prise d'essai 1 dans le pycnomètre (g)	M2 =	1 316,6	1 277,2
Volume prédeterminé du pycnomètre utilisé (ml)	V =	2 276	2 360
Température de la prise d'essai dans l'eau (°C) Après immersion peridant au moins 1 heure	Δ=	23,0	23,0
Masse de la prise d'essaì dans le pycnomètre rempli d'eau (g) Après immersion pendant au moins 1 heure	M3 =	3 484,0	3 536,1
Masse volumique réelle pré-séchée de la prise d'essai (Mg/m³)		2,694	2,680

Masse volumique réelle pré-séchée

$$\rho_{p} = \frac{M_{2} - M_{1}}{V - \frac{M_{3} - M_{2}}{\rho_{w}}}$$


$$\rho p = 2,69 \text{ Mg/m}^{3}$$

A été réalisé à IDA Grapulats, le 14/09/20

Essai réalisé par Yohan MICLOT

Le Responsable de la Section Granulats

Bertrand CHORIER

ESSAIS

ACCEPTATION

ATT 1-1076

Rapport d'essai n° : 20 IAG 09-036 (Gravillon 10/14 Concassé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 10/14 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-036	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications Spécification	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 691,4
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 = 4 358,3
Masse du pycnomètre rempli d'eau uniquement (g)	M3 = 3 301,7
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 1 681,6
Température de la prise d'essai dans l'eau (°C)	Δ = 22,0

Masse volumique réelle

$$\rho_{rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,64 Mg/m³

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS CLE Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-036 (Gravillon 10/14 Concassé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 10/14 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-036	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 691,4
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 1 681,6

Coefficient d'absorption d'eau

$$\mathbf{WA24} = 100 \mathbf{x} \frac{\mathbf{M}_1 - \mathbf{M}_4}{\mathbf{M}_4}$$

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par CHAR Laura GROLEAS Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pas été demandées par le donneur d'ordre.
ont l'objet d'un document séparé.
ont indiquées dans le présent rapport d'essai en application du texte de référence tixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-036 (Gravillon 10/14 Concassé) Résistance au gel - dégel *

Norme NF EN 1367-1 - Août 2007

Nature	Gravillon 10/14 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	30/09/2020
Nro d'échantillon	20 IAG 09-036	Technicien	Laura GROLEAS

Principe

L'action répétée du gel sur les granulats saturés d'eau peut provoquer une dégradation de ceux-ci (fragmentation ou microfissuration), particulièrement pour les granulats issus de roches poreuses.

L'essai consiste à mesurer la perte de masse des gravillons, au tamis d/2, sur le matériau ayant subi, après avoir été saturé, 10 cycles gel-dégel de + 20°C à -17,5°C.

Echantillon avant les cycles Gel-Dégel

Masse totale avant les cycles Gel-Dégel	M1 = 6 001,2 g
Masse échantillon Bac n°3	M = 2 000,5 g
Masse échantillon Bac n°2	M = 2 000,5 g
Masse échantillon Bac n°1	M = 2 000,2 g
Masse d'échantillon en g	
Classe granulaire	Classe: 8 / 16 mm

Echantillon	après	les	cycles	Gel-Dég	el
--------------------	-------	-----	--------	---------	----

Tamis de lavage	Tamis = 4 mm
Masse d'échantillon en g	
Masse échantillon Bac n°1	M = 1 998,3 g
Masse échantillon Bac n°2	M = 1 999,3 g
Masse échantillon Bac n°3	M = 1 999,4 g
Masse totale après les cycles Gel-Dégel	M2 = 5997,0 g

Sensibilité au gel par perte de masse

$$F = 100 \times \frac{M_1 - M_2}{M_1}$$
 F = 0,1 %

A été réalisé à IDA Granulats, le 30/09/20

Essai réalisé par

Laura GROLEAS Cade

Le Responsable de la Section Granulats

Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pas été demandées por le donneur d'ordre.

nont pas été demandées por le donneur d'ordre.

sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-037 (Gravillon 10/20 Concassé) Masse volumique réelle *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 10/20 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-037	Technicien	Laura GROLEAS

La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y Principe compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 765,3
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 = 4 428,4
Masse du pycnomètre rempli d'eau uniquement (g)	M3 = 3 321,5
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 1 756,0
Température de la prise d'essai dans l'eau (°C)	Δ = 22,0

Masse volumique réelle

$$\rho_{\rm rd} = \rho_w \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
 prd = 2,66 Mg/m³

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS Con Le Responsable de la Section Granulats Bertrand CHORIER

La reproduction de ce rapport d'essai n'est autorisé que sous sa forme intégrale, il comporte A... page(s).
L'accréditation par Cafrac atteste de la compétence du laboratoire pour les seuls essais couverts par l'accréditation, repérés par le symbole*.
Les essais faisant l'objet du présent rapport portent sur un échantillan prélevé dans certaines conditions. Leur représentativité est liée à celle de l'échantillan et ne peut être étendue à l'ensemble de la production ou de la fourniture.

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pas été demandées par le donneur d'ordre.

ont l'objet d'un document séparé.

sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n° : 20 IAG 09-037 (Gravillon 10/20 Concassé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 10/20 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-037	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Ехр	Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 765,3	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 756,0	

Coefficient d'absorption d'eau

WA24 =
$$100 \times \frac{M_1 - M_4}{M_4}$$
 WA24 = 0,5 %

A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS Code Le Responsable de la Section Granulats Bertrand CHORIER

Rapport d'essai n°: 20 IAG 09-038 (Gravillon 4/6,3 Concassé) Masse volumique réelle

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 4/6,3 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-038	Technicien	Laura GROLEAS

Principe La masse volumique réelle est définie comme le rapport entre la masse de l'échantillon séché et le volume qu'il occupe dans l'eau, y compris les pores fermés et ceux accessibles à l'eau.

Spécifications	Ехр	Expression des résultats	
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 =	1 153,9	
Masse du pycnomètre contenant les granulats saturés (g) Après immersion	M2 =	4 041,7	
Masse du pycnomètre rempli d'eau uniquement (g)	M3 =	3 323,6	
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 =	1 144,7	
Température de la prise d'essai dans l'eau (°C)	Δ=	22,0	

Masse volumique réelle

$$\rho_{\rm rd} = \rho_{\rm w} \cdot \frac{M_4}{M_1 - (M_2 - M_3)}$$
prd = 2,62 Mg/m³

A été réalisé à IDA Granulats, le 04/09/20

Essai réalisé par Laura GROLEAS C

Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le fait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillon défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

n'ont pos été demandées par le donneur d'ordre.
nont pos été demandées par le donneur d'ordre.
nont pos été demandées par le donneur d'ordre.

sont indiquées dans le présent rapport d'essai en application du texte de référence lixé par le donneur d'ordre.

Rapport d'essai n°: 20 IAG 09-038 (Gravillon 4/6,3 Concassé) Coefficient d'absorption d'eau *

Norme NF EN 1097-6 - Article 8

Nature	Gravillon 4/6,3 Concassé	Date de prélèvement	17/08/2020
Installation de traitement	Site de BALDERSHEIM	Prélevé par	Client
Donneur d'ordre	TEGRAL SA	Lieu de prélèvement	Site de BALDERSHEIM
Origine des matériaux	Site de BALDERSHEIM	Date de réception	28/08/2020
Nro d'affaire	15 / 20 / 09-008 (630002164)	Date d'essai	04/09/2020
Nro d'échantillon	20 IAG 09-038	Technicien	Laura GROLEAS

Principe

Le coefficient d'absorption d'eau est défini comme le rapport de l'augmentation de masse d'un échantillon de granulats à sa masse sèche, après passage à l'étuve, du fait de la pénétration de l'eau dans les pores accessibles à l'eau. Cette imbibition partielle est obtenue par immersion de l'échantillon dans l'eau pendant 24 heures à 22°C à la pression atmoshérique.

Spécifications	Expression des résultats
Masse de l'échantillon saturé en eau - Pesée dans l'air (g) Après immersion	M1 = 1 153,9
Masse sèche de l'échantillon - Pesée à l'air (g) Après séchage	M4 = 1 144,7

Coefficient d'absorption d'eau

WA24 =
$$100 \times \frac{M_1 - M_4}{M_4}$$

WA24 = 0,8 %

> A été réalisé à IDA Granulats, le 04/09/20 Essai réalisé par Laura GROLEAS Colon Le Responsable de la Section Granulats Bertrand CHORIER

L'attention est attirée sur le lait que les résultats mentionnés par le présent rapport ont été obtenus avec l'échantillan défini ci-dessus mais que la portée et les conclusions à tirer de ces résultats :

In n'ant pas été demandées par le donneur d'ordre. | lont l'objet d'un document séparé. |
| sont indiquées dans le présent rapport d'essai en application du texte de référence fixé par le donneur d'ordre.

